Application of Lagrange Interpolation Method to Solve First-Order Differential Equation Using Newton Interpolation Approach
نویسندگان
چکیده
منابع مشابه
SOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION
In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.
متن کاملq-Identities from Lagrange and Newton Interpolation
Combining Newton and Lagrange interpolation, we give q-identities which generalize results of Van Hamme, Uchimura, Dilcher and Prodinger.
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملApplying Multiquadric Quasi-Interpolation to Solve KdV Equation
Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations. Based on the good performance, Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation, which is generalized from the LD operator, and used it to solve hyperbolic conservation laws and Burgers’...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eurasian journal of science and engineering
سال: 2023
ISSN: ['2414-5602', '2414-5629']
DOI: https://doi.org/10.23918/eajse.v9i1p89